

# SNV022EC.X

Combiner Box Card

# **User and Installation Manual**

### **SNV Engineering LTD**

24BPapadiamantopoulouStreet • 1<sup>st</sup> floor Ilissia • Athens • Greece • 11528 Phone +30 2107779260 • Fax +30 2107703223 Site: www.snveng.gr

# Document Follow-up

| Action       | Name               | Function         | Date       | Signature |
|--------------|--------------------|------------------|------------|-----------|
| Written by:  | TzanetatosDionysis | Engineer         | 08/10/2012 |           |
| Verified by: | Vaidakis Michael   | General Director | 08/10/2012 |           |
| Verified by: |                    |                  |            |           |

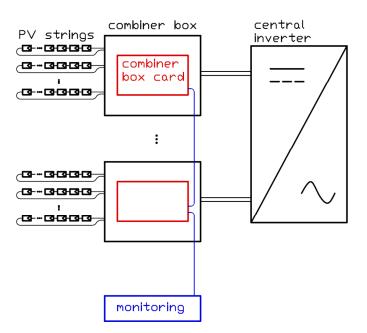
## Versions

| Indices | Date       | Modification             |
|---------|------------|--------------------------|
| V0.1    | 08/10/2012 | Initial Draft Version.   |
| V1.0    | 15/05/2013 | Initial release version. |
|         |            |                          |
|         |            |                          |
|         |            |                          |
|         |            |                          |

This document and the information it contains are the sole property of SNV. They shall not be disclosed nor reproduced without the prior written approval of SNV as originator.

# **Table of Contents**

| Document Follow-up                           |    |
|----------------------------------------------|----|
| Versions                                     | ii |
| Table of Contents                            | i  |
| Description                                  | 1  |
| Overview                                     | 1  |
| Features                                     | 2  |
| Specifications                               | 3  |
| Electrical Characteristics                   | 3  |
| Physical & Environmental Characteristics     | 3  |
| Measurement Specifications                   | 4  |
| Communications and bus Specifications        | 4  |
| Layout                                       | 5  |
| Ordering Information                         | 8  |
| Safety instructions                          | 9  |
| Safety Symbols                               | 10 |
| Installation                                 | 11 |
| Overview                                     | 11 |
| Communication bus and power supply provision | 12 |
| Inspection and handling                      | 12 |
| Preparation                                  | 12 |
| Card mounting and support                    | 12 |
| Housing preparation                          | 13 |
| Cables and fuses                             | 14 |
| Connectors plug preparation                  | 15 |
| Card Installation                            | 15 |
| Card replacement                             | 18 |
| Dimensions                                   | 19 |
| Operation                                    | 20 |
| Fuse replacement                             | 20 |
| Communication and Monitoring                 | 20 |
| Modbus Memory Map                            | 21 |
| MODBUS Functions                             | 27 |
| Technical Assistance                         | 29 |
| Annex A – Drawings                           | 30 |
|                                              |    |


| Annex B – Recommended board integration | 36 |
|-----------------------------------------|----|
| Single line diagram                     | 36 |
| 3D views                                | 37 |
| Photos                                  | 38 |



## **Description**

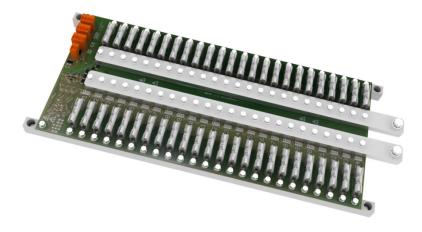
#### **Overview**

SNV022EC.A is a "combiner box" card with dc current, voltage measurement and with one digital input. It is designed to be used in photovoltaic parks with central inverters in order to connect in parallel strings and monitor string currents and voltage.



It has on board fuse holder clips for each string for both positive and negative side, avoiding extra cabling and material costs. Current collector bars are premounted and designed to be directly connected to the disconnector switch for a more clear installation and cost efficient.

Current measurement is performed on the positive side. Low thermal drift, high quality shunt resistors are used. Voltage on them is amplified through precision amplifiers and then sampled and processed by a 32bit CORTEX-M3 microcontroller at 96MHz.


The microcontroller can deliver measurements through an isolated serial RS485 bus transceiver using Modbus protocol. It can also hold values, in order to perform simultaneous measurements through all the cards in a bus and then retrieve all the measurements. The microcontroller is also calculating the average of voltage, currents and current square values, with 667Hz sampling for each channel. The averaging period is indicated-marked by a master controller

© SNV Engineering Ltd



broadcast command. Averaged values of different cards are synchronized and then collected. Bandwidth consumption on the bus is limited, giving the ability for a prompt response of the rest requests.

A contact input is also implemented in order to monitor other component like the condition of an SPD. Board temperature is also measured and provided.



### **Features**

The SNV022EC.A offers the following (see also specification tables):

- 24 channels
- on board fuse holder clips for positive and negative side
- on board current collector bars ready to connect to disconnection switch
- 24 independent dc current measurement at positive side
- 0 13.5A current measurement range (other ranges are available on demand)
- 0 1000V voltage measurement
- Very Low Sensing resistance on measurement channels: 10mΩ
- system voltage up to 1000Vdc
- 667Hz sampling per channel
- 1 contact input
- Board temperature measurement
- On board long time averaging and integrations
- Communication using MODBUS over RS485
- Board power consumption < 1.5W</li>
- Operating temperatures : -20°C to +60°C
- 32bit ARM CORTEX-M3 microcontroller @ 96MHz
- CE: EMC: EN61326-1 and Safety: EN61010-1



# **Specifications**

#### **Electrical Characteristics**

|                                | note      | min   | nom | max  | Unit      |
|--------------------------------|-----------|-------|-----|------|-----------|
| Power supply                   | Absolute  | 18    | 24  | 30   | V dc      |
| Consumption:                   |           |       |     |      |           |
| 24V DC – 0A all 24 channels    |           |       | 21  | 30   |           |
| 24V DC – 13.5A all 24 channels | Note 1, 2 |       | 45  | 54   | mΛ        |
| 18V DC – 0A all 24 channels    |           |       | 29  | 39   | mA        |
| 18V DC – 13.5A all 24 channels |           |       | 68  | 79   |           |
| 18V DC – 16A all 24 channels   | Abs. Max  |       |     | 86   |           |
| Measurement channel            | each      |       |     | 12   | mOhm      |
| resistance                     | eacii     |       |     | 12   | IIIOIIIII |
| Channel maximum current        |           | -16   |     | 16   | Α         |
| Channel max working voltage    | Note 3    |       |     | 1000 | V dc      |
| Current measurement range      | Note 4    | 0.035 | 1   | 13.5 | Α         |
| Voltage measurement range      | Note 5    | 1     | 1   | 1000 | V         |

Note 1: The value is for each installed board

Note 2: The maximum number of cards to be installed in series is 127.

Note 3: Equipment pollution degree 2.

Note 4: Current values lower than 35mA are pulled down to zero Note 5: Voltage values lower than 1V are pulled down to zero

### **Physical & Environmental Characteristics**

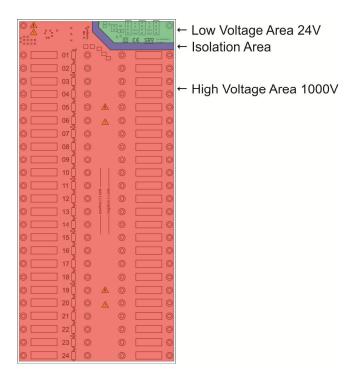
|                       | Details                                      |  |  |
|-----------------------|----------------------------------------------|--|--|
| Operating Temperature | -20 °C to +60 °C                             |  |  |
| Storage Temperature   | -40 °C to +100 °C                            |  |  |
| Board Dimensions      | 500x230x40 mm                                |  |  |
| LxWxH                 | See "User and Installation manual" Annex A   |  |  |
| LXVVXH                | for detailed drawings                        |  |  |
|                       | Meets: EN 61326-1,                           |  |  |
| EMC – Emissions       | EN 61000-6-3, EN 50081-1, EN 55011(Class A   |  |  |
|                       | ITE)                                         |  |  |
|                       | Meets: EN 61326-1, EN 50082-1,               |  |  |
|                       | EN61000-4-3 (Radiated EM fields immunity)    |  |  |
|                       | EN61000-4-4 (Fast transient burst (EFT))     |  |  |
|                       | EN61000-4-5 (Surges)                         |  |  |
| EMC – Immunity        | EN61000-4-6 (Conducted EM fields immunity)   |  |  |
| Elvic – Illillidility | Also successfully tested (Criterion A) at    |  |  |
|                       | Conducted immunity at 10Vrms, and Radiated   |  |  |
|                       | immunity at 10V/m (instead of 3Vrms and 3V/m |  |  |
|                       | required from the above standards)           |  |  |
|                       | see accuracy report for immunity levels.     |  |  |
| Safety                | Meets EN 61010-1                             |  |  |
| Massurament Catagory  | RATED CLASS I and RATED TRANSIENT            |  |  |
| Measurement Category  | OVERVOLTAGES 1,5KV                           |  |  |
| Heago                 | Indoor or outdoor use installed              |  |  |
| Usage                 | in a metallic and/or plastic box             |  |  |



**Measurement Specifications** 

|                        | Details                            |  |  |
|------------------------|------------------------------------|--|--|
| Maximum averaging time | 15 days at 667Hz sampling          |  |  |
| Current measurement    | 0.49/ reading + 0.39/ range(13.5A) |  |  |
| accuracy               | 0.4% reading + 0.2% range(13.5A)   |  |  |
| ADC resolution (12bit) | 3.3mA                              |  |  |
| Thermal Drift on board | 0.04‰ / °C                         |  |  |
| compensated(Note 6)    |                                    |  |  |
| Calibration current    | at 5.5 A                           |  |  |
| Voltage measurement    | 1%                                 |  |  |
| accuracy               | 170                                |  |  |
| Calibration voltage    | 700 V                              |  |  |

Note 6: Compensation, even for averaged values, is performed before value transmission, using actual board temperature, measured by the on board temperature sensor. Long time averaging with large temperature variations could produce thermal drifts on the transmitted values respectively.


**Communications and bus Specifications** 

| Hardware layer                               | RS485      |
|----------------------------------------------|------------|
| Communication Protocol                       | Modbus RTU |
| Default baud rate                            | 9600 bps   |
| Max number of nodes                          | 128        |
| Max suggested cable length                   | 1200 m     |
| Protected from Overvoltage Line Faults up to | ±60V       |
| Clamp diodes (A and B to GND)                | ±30V       |
| Bus Short-Circuit Protection                 | Yes        |



### Layout

The card is separated in two main areas (see figure 3).



The one (bottom side) is dedicated to the measurement of the current passing through the card and the positive and negative collector bars and to accommodation of the fuses for each string. This area is a high voltage area, where voltage is up to 1000Vdc exist.

#### **CAUTION**



To the card will be connected high voltage signals (up to 1000Vdc)

The operation and installation of the card is considered to be done from qualified personnel

The high voltage area is marked on PCB with a dash line. All area inside dash line is in high voltage (up to 1000V dc).

The other area (upper right) is the low voltage area. The Modbus interface and card power supply are connected to this area. The low voltage area is protected through a F1, 1A fuse (P/N: SF-1206F100-2)

The low voltage and high voltage areas are separated by an isolation area.



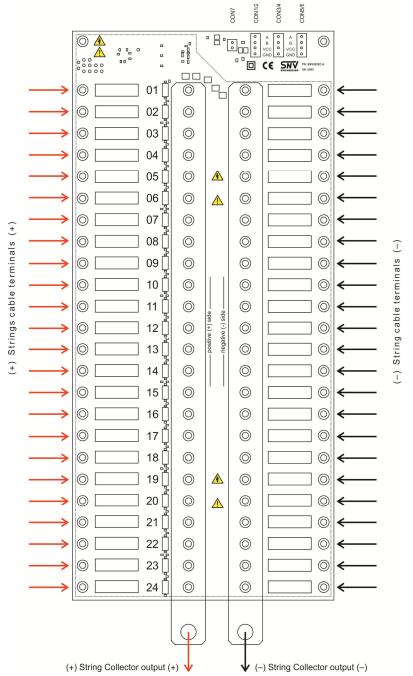



Figure 1: CMC SNV022EC.ATopology Diagram.

The SNV022EC.A uses the connectors CON1/CON2, CON3/CON4 and CON5/CON6 to connect to the bus and power supply (see table 1).

These connectors are equivalent (terminals are common) and can be used as bus/power supply input or output to the next card in the chain or install terminal/bias resistors.

Connector CON7 has two pins to connect a dry contact (switch). The connector CON7 is used to monitor a switch or a sensor acting as a switch (ex. surge protection, door opening, disconnector trip etc.).





#### **CAUTION**

At the connectors CON1/CON2, CON3/CON4, CON5/CON6 and CON7 should be connected only to safety extra low voltage systems.

The connections for the connectors CON1/CON2, CON3/CON4,CON5/CON6 and CON7 are listed in the table 1.

| Connector | Pin Number | Description | Comments          |
|-----------|------------|-------------|-------------------|
| CON7      | Pin 1      | Pin1        | Day and at in and |
| 8         | Pin 2      | Pin2        | Dry contact input |
| 9         | Pin 4      | BUS A       | TxD+/RxD+         |
| CON5/CON6 | Pin 3      | BUS B       | TxD-/RxD-         |
| :ON5/     | Pin 2      | VCC         | 24Vdc             |
| O         | Pin 1      | GND         | Ground            |
| 4         | Pin 4      | BUS A       | TxD+/RxD+         |
| CON3/CON4 | Pin 3      | BUS B       | TxD-/RxD-         |
| :0N3/     | Pin 2      | VCC         | 24Vdc             |
| O         | Pin 1      | GND         | Ground            |
| 2         | Pin 4      | BUS A       | TxD+/RxD+         |
| /CON      | Pin 3      | BUS B       | TxD-/RxD-         |
| CON1/CON2 | Pin 2      | VCC         | 24Vdc             |
| C         | Pin 1      | GND         | Ground            |

Table 1: CMC Connectors Description

The connector plugs used are equivalent to the ones listed in the following table:

| Connector Ref | Manufacturer | Manufacturer P/N   |
|---------------|--------------|--------------------|
| For CON1/CON2 | FCI          | 20020006-H041B01LF |
| For CON3/CON4 | FCI          | 20020006-H041B01LF |
| For CON5/CON6 | FCI          | 20020006-H041B01LF |
| For CON7      | FCI          | 20020006-H021B01LF |

Table 2: Connectors Description



# **Ordering Information**

Listed below are part numbers for the Current Measurement Card and available accessories.

Cards are provided with collector bars mounted and mounting bars as a whole. Separate part numbers for collector bars and mounting bars are provided only for replacements.

| Item                                      | Part Number |  |  |  |
|-------------------------------------------|-------------|--|--|--|
| 24 channels card                          | SNV022EC.A  |  |  |  |
| Collector AL bar                          | SNV022M.005 |  |  |  |
| Collector AL bar, larger terminal opening | SNV022M.013 |  |  |  |
| Mounting bar, terminals side              | SNV022M.002 |  |  |  |
| Mounting bar, collector bar side          | SNV022M.004 |  |  |  |
| 16 channels card                          | SNV022EC.B  |  |  |  |
| Collector AL bar                          | SNV022M.017 |  |  |  |
| Mounting bar, terminals side              | SNV022M.020 |  |  |  |
| Mounting bar, collector bar side          | SNV022M.022 |  |  |  |
| (according to drawings, see ANNEX A)      |             |  |  |  |

Table 3: CMC ordering information



## **Safety instructions**

The Combiner Box Card, SNV022EC.A is designed and manufactured to be functionally safe for persons who operate or service it. Potential hazards are addressed by a combination of careful system design and appropriate warning labels.

However, during its operation, high voltages apply on the card. As a consequence, the card is capable of causing serious personnel injury and damage to equipment, if installed, operated, or serviced improperly.

#### **CAUTION**



To the card will be connected high voltage signals (up to 1000Vdc)

The installation is considered to be done from qualified personnel

The card should be installed in such a way that there is no access to it by hand neither from the cables part nor from any other place

### **CAUTION**





>= 8mmgap from grounded plates

>= 15mm gap from non-grounded plates

<u>Note:</u> The gap is defined as the distance between relevant plate, or other element and the card routes, or components' pins, or the highest component mounted on the card, including any other conducting element, like bolts, nuts, bar, cables and cable terminals fixed on the card

SNV does not assume liability for the customer's failure to comply with established procedures. Read this chapter before you perform any operations or installation of the card.

If the equipment used in a manner not specified by the instructions of user manual, the protection provided by the card may be impaired.

SNV's equipment is designed to, and reviewed, against to CE Safety and EMC standards. These standards incorporate applicable electrical codes and safety regulations.

This manual contains information and warnings which users must follow for safe operation and to keep the apparatus in safe condition.



Even when the apparatus is not connected to its power supply, terminals can be electrically live, and the opening of covers or removal of parts is likely to expose live parts.

The card must be disconnected from all voltage sources before it is disassembled for anyadjustment, replacement, maintenance, or repair.

The following symbols appear in various places on the card to call your attention to hazardsor to indicate that you should consult the manuals for further information.

# **Safety Symbols**



Double insulation or reinforced insulation.



CAUTION RISK OF ELECTRIC SHOCK



#### **CAUTION RISK OF DANGER**

<u>Note</u> When an equipment is marked with this symbol the documentation must always be consulted, in order to find out the nature of the potential HAZARD and any actions which have to be taken



### Installation

#### Overview

The below installation procedure is proposed by SNV Engineering in order to ensure the good and safe operation of the card.

In case that the described procedure is not followed, SNV Engineering is not responsible from any caused damages or injury.

Card has DC current measurement channels with current output terminal common.

#### **CAUTION**



To the card will be connected to high voltage signals (up to 1000Vdc)

The installation is considered to be done from qualified personnel

The card should be installed in such a way that there is no access to it by hand neither from the cables part nor from any other place

#### **CAUTION**





>= 10mm gap from grounded plates

>= 20mm gap from non-grounded plates

<u>Note:</u> The gap is defined as the distance between relevant plate, or other element and the card routes, or components' pins, or the highest component mounted on the card, including any other conducting element, like bolts, nuts, bar, cables and cable terminals fixed on the card

Connector CON7 is a dry contact input, having two states depending the contact of the connector's two pins or not.



#### **CAUTION**

No voltage should be applied to any of the two pins of CON7



### Communication bus and power supply provision

Card uses RS485 bus for data communication. Cards are connected to the bus in series using twisted pair cable. There are three equivalent connectors (CON1/CON2, CON3/CON4 and CON5/CON6) to facilitate connection of multiple cards in series.

It is suggested to connect all cards in series in a "line", preferable with the master controller in the middle. If not convenient a star topology, with the master controller in the center, may work depending of the cable length, the number of the lines, and their relative lengths. In any case all the terminal nodes must be terminated with the appropriate resistor. Bias resistors also must be installed.

RS485 transceiver used supports up to 128 nodes; hence up to 127 boards can be connected to the same bus. The total length of the cable used for the boards interconnection is suggested not to exceed 1200m, when bus repeaters are not used.

The same cable can be used for the power supply of the cards, using an extra pair. The power supply source should be 24Vdc and the current capacity should not exceed 5A. The card has power supply inverse polarity protection.

### Inspection and handling

Visually inspect the Card before installing it, for any defect or damage.

Immediately notify the carrier if any damage is apparent.



#### **CAUTION**

Proper ESD handling procedures must always be used when packing, unpacking or installing the card. Failure to do so may cause damage to the unit.

### **Preparation**

#### Card mounting and support

Current measurement channel and common terminals are connected with M5 bolts through  $\phi$ 5.5 holes on the card. There are also two additional holes at the plug connector side only for mounting.

The card is mounted on "mounting bars" (see ordering information and drawings in ANNEX A).

If other material is applied, than those supplied by SNV, the following specifications should at least comply:



- ensure following gap, defined as the distance between relevant plate, or other element and the card routes, or components' pins, or the highest component mounted on the card, including any other conducting element, like bolts, nuts, bar, cables and cable terminals fixed on the card.
  - >= 10mm gap from grounded plates
  - >= 20mm gap from non-grounded plates
- ensure dielectric strength >3.5kV
- ensure flammability rating better than 94V1.
- ensure operating temperature range and aging strength depending application specifications.

All M5 bolts must be tight with torque 3-4 Nm, to ensure the conductivity. Use plain washer (DIN125) and above lock washer (DIN127) between ring terminal or common bar and bolt head. Do not apply lock washer directly on the card.



### **Housing preparation**

The box where the card is installed is considered to be a metallic and/or plastic box.

In case of not using self-tapping screws, the plate of the box is suggested to have a drilling pattern like the one shown in figure 4, for the mounting of the card.



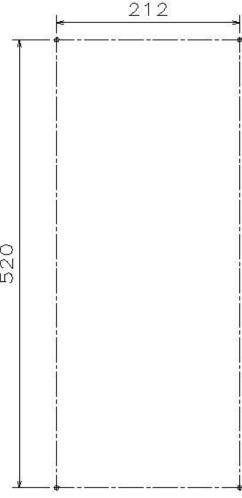



Figure 2: Drilling pattern

#### **Cables and fuses**

The cables should be properly selected and sized according to the application specifications. Voltage must not exceed 1000VDC. A **fuse 10x38 gPV type** must be installed on the card fuse clips, with rated current up to 16A, appropriate voltage rating.



### **CAUTION**

Voltage must not exceed 1000VDC. A fuse must be installed for each current measurement channel separately, with rated current up to 16A.

For the preparation of the cables connected to the current channels the IPC-620 have to be followed by the installer.

© SNV Engineering Ltd



The cables should be connected to the current channels using ring terminals and lock washers above the ring terminal.

#### **Connectors plug preparation**

The connector plugs to be used are those listed in table 2 or equivalent.

For the preparation of the cables connected to the plugs the IPC-620 have to be followed by the installer.

Plugs should be connected with cables while unplugged.

### **Card Installation**

During the installation of the card any power source is prohibited.

The proposed installation steps for the SNV022EC.A are the following and illustrated in the figures 5 to 8:

- Mount the assembled card to the back plate using four screws (self-taped or normal) in the appropriate position depending to main switch. (figure 5)
- 2. Connect collector bars to main switch using the appropriate bolts.
- 3. Fixing the cable terminal rings with bolts M5 on mounting bar with torque of 3-4 Nm (figure 6).
- 4. Install fuses 10x38 gPV type up to 16A using the appropriate tool. Ensure that the main switch is off. (figure 7).
- 5. Plug connectors CON1/CON2, CON3/CON4, CON5/CON6 and CON7 on the card as required. (figure 8).



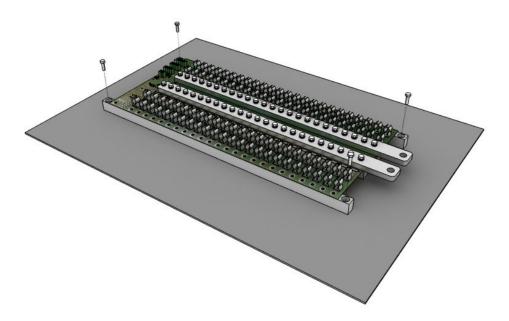



Figure 3: Mount the card

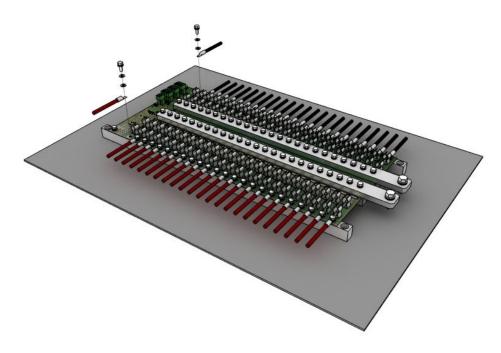



Figure 4: Install cables



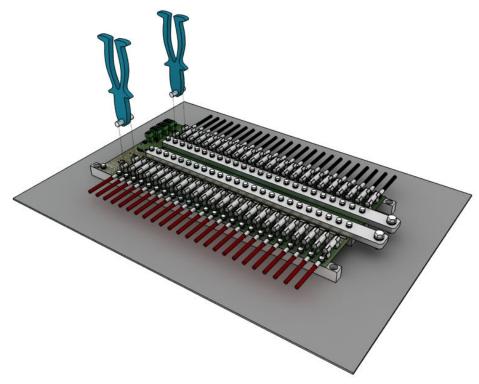



Figure 5: Install the fuses

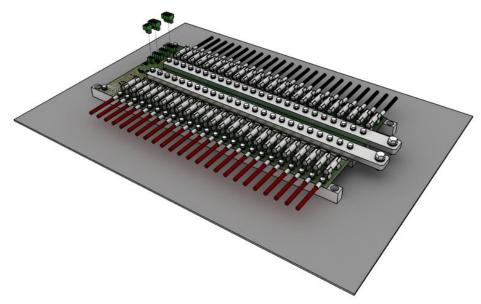



Figure 6: Place the connectors for bus and indicator



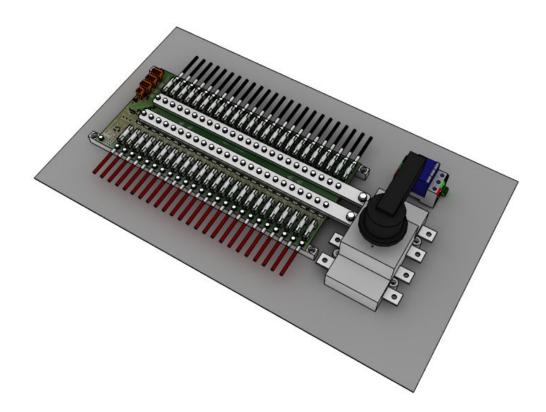
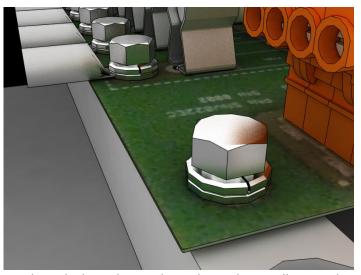




Figure 7: Mounting the common current cable on the CMC SNV022EC.A



All screws must have lock washer and simple washer as illustrated in the above picture.

# **Card replacement**

During the replacement of the card any power source is prohibited.



### **Dimensions**

The Combiner Box Card SNV022EC.A dimensions are:

LxWxH in mm  $\rightarrow$  500x230x40 (without collector and mounting bars)

→520x230x40 (with collector and mounting bars)

The Combiner Box Card SNV022EC.B dimensions are:

LxWxH in mm → 348x230x40 (without collector and mounting bars)

→ 368x250x40 (with collector and mounting bars)

See drawing for more details.



# **Operation**

### **Fuse replacement**

The suggesting steps to replace fuse are:

- 1. See the safety instructions for high voltage areas. Ensure that you have/wear all the appropriate equipment.
- 2. Switch off the main switch.
- 3. Use the appropriate tool to remove the fuses. Careful not to connect the conductors that are near.
- 4. Use the appropriate tool to install the new fuse. Careful not to connect the conductors that are near.
- 5. Switch on the main switch.



### **Communication and Monitoring**

For communication, MODBUS protocol over an RS485 serial line is implemented (RTU mode @9600bps). See further "MODBUS Application Protocol Specification v1.1b" and "MODBUS over Serial Line Specification and Implementation Guide v1.02".

Data can be read through "16bit input registers". Commands are sending by writing "Holding registers". Three commands are implemented: "hold", "mark" and "change address". Hold command transfer "instant current" values to "current holded values". Command can be send with a broadcast write, acquiring a snapshot of all the currents from all the cards in the bus.

Mark command initiates averaging and at the same time terminates previous averaging and transfers the result to the relevant registers. It is suggested to broadcast periodically the "mark" command, with the desired period (as for example 10 mins), and during each period read and store the averaged data.



### **Modbus Memory Map**

The memory map of the card is describing in the following table:

|          | 16bit input registers (use Modbus function 4) |            |          |                      |                 |         |  |
|----------|-----------------------------------------------|------------|----------|----------------------|-----------------|---------|--|
| Address  |                                               |            |          |                      |                 |         |  |
| dec      | h                                             | ex         | Type     | pe Units Description |                 | Channel |  |
| 0        | 0x                                            | 000        | Classi   | Amperes              |                 | 4       |  |
| 1        | 0x                                            | 001        | float    |                      |                 | 1       |  |
| 2        | 0x                                            | 002        | float    | Amperes              |                 | 2       |  |
| 3        | 0x                                            | 003        | noat     | Amperes              |                 |         |  |
| 4        | 0x                                            | 004        | float    | Amperes              |                 | 3       |  |
| 5        | 0x                                            | 005        |          | <b>,</b>             | <b>.</b>        | -       |  |
| 6        | 0x                                            | 006        | float    | Amperes              | ren             | 4       |  |
| 7<br>8   | 0x<br>0x                                      | 007<br>008 |          |                      | cur             |         |  |
| 9        | 0x                                            | 009        | float    | Amperes              | ant             | 5       |  |
| 10       | 0x                                            | 00A        |          |                      | instant current |         |  |
| 11       | 0x                                            | 00B        | float    | Amperes              | · <del>-</del>  | 6       |  |
| 12       | 0x                                            | 00C        | Class    | <b>A</b>             |                 | 7       |  |
| 13       | 0x                                            | 00D        | float    | Amperes              |                 | 7       |  |
| 14       | 0x                                            | 00E        | float    | Amperes              |                 | 8       |  |
| 15       | 0x                                            | 00F        | HOAL     | Amperes              |                 | 0       |  |
| 16       | 0x                                            | 010        | float    | Amperes              |                 | 9       |  |
| 17       | 0x                                            | 011        |          |                      |                 |         |  |
| 18       | 0x                                            | 012        | float    | Amperes              |                 | 10      |  |
| 19       | 0x                                            | 013        |          | ·                    |                 |         |  |
| 20<br>21 | 0x<br>0x                                      | 014<br>015 | float    | Amperes              |                 | 11      |  |
| 22       | 0x                                            | 016        |          | oat Amperes          |                 |         |  |
| 23       | 0x                                            | 017        | float    |                      |                 | 12      |  |
| 24       | 0x                                            | 018        | <i>c</i> |                      |                 | 40      |  |
| 25       | 0x                                            | 019        | float    | Amperes              |                 | 13      |  |
| 26       | 0x                                            | 01A        | float    | Amperes              |                 | 14      |  |
| 27       | 0x                                            | 01B        | iioat    | Amperes              |                 | 14      |  |
| 28       | 0x                                            | 01C        | float    | Amperes              |                 | 15      |  |
| 29       | 0x                                            | 01D        |          |                      |                 |         |  |
| 30       | 0x                                            | 01E        | float    | Amperes              |                 | 16      |  |
| 31       | 0x                                            | 01F        |          | •                    |                 |         |  |
| 32       | 0x<br>0x                                      | 020<br>021 | float    | Amperes              |                 | 17      |  |
| 34       | 0x<br>0x                                      | 021        |          |                      |                 |         |  |
| 35       | 0x                                            | 023        | float    | Amperes              |                 | 18      |  |
| 36       | 0x                                            | 024        | CI.      |                      |                 |         |  |
| 37       | 0x                                            | 025        | float    | Amperes              |                 | 19      |  |
| 38       | 0x                                            | 026        | float    | Amperes              |                 | 20      |  |



|     |        | 16bit | input | registers (use N | lodbus funct            | tion 4) |
|-----|--------|-------|-------|------------------|-------------------------|---------|
| Ac  | ddress |       |       |                  |                         |         |
| dec | he     | X     | Туре  | Units            | Description             | Channel |
| 39  |        | 027   |       |                  |                         |         |
| 40  |        | 028   |       |                  | -                       |         |
| 41  |        | 029   | float | Amperes          |                         | 21      |
| 42  |        | 02A   |       |                  | -                       |         |
| 43  |        | 02B   | float | Amperes          |                         | 22      |
| 44  |        | 02C   |       |                  | -                       |         |
| 45  |        | 02D   | float | Amperes          |                         | 23      |
| 46  |        | 02E   |       |                  | -                       |         |
| 47  |        | 02F   | float | Amperes          |                         | 24      |
| 48  |        | 030   |       |                  |                         |         |
| 49  |        | 031   | float |                  |                         |         |
| 50  |        | 032   |       |                  | 1                       |         |
| 51  |        | 033   | float |                  |                         |         |
| 52  |        | 034   |       |                  |                         |         |
| 53  |        | 035   | float |                  | not used – returns zero |         |
| 54  |        | 036   |       |                  | su.                     |         |
| 55  |        | 037   | float |                  | tur                     |         |
| 56  |        | 038   |       |                  | - e                     |         |
| 57  |        | 039   | float |                  | - pa                    |         |
| 58  |        | 03A   |       |                  | nsn                     |         |
| 59  |        | 03B   | float |                  | not                     |         |
| 60  |        | 03C   |       |                  | 1 -                     |         |
| 61  |        | 03D   | float |                  |                         |         |
| 62  |        | 03E   |       |                  | 1                       |         |
| 63  |        | 03F   | float |                  |                         |         |
| 64  |        | 040   |       |                  |                         |         |
| 65  |        | 041   | float | Amperes          |                         | 1       |
| 66  |        | 042   |       |                  | 1                       |         |
| 67  |        | 043   | float | Amperes          |                         | 2       |
| 68  |        | 044   |       |                  | 1                       |         |
| 69  |        | 045   | float | Amperes          |                         | 3       |
| 70  |        | 046   |       |                  | 1                       |         |
| 71  |        | 047   | float | Amperes          | ged                     | 4       |
| 72  |        | 048   | 61    |                  | current averaged        | _       |
| 73  |        | 049   | float | Amperes          | аvє                     | 5       |
| 74  |        | 04A   | 6.    |                  | int                     | _       |
| 75  |        | 04B   | float | Amperes          | 7.LL                    | 6       |
| 76  |        | 04C   | 6.    |                  | † ປັ                    | _       |
| 77  |        | 04D   | float | Amperes          |                         | 7       |
| 78  |        | 04E   | 6.    |                  | 1                       |         |
| 79  |        | 04F   | float | Amperes          |                         | 8       |
| 80  |        | 050   | CI.   |                  | 1                       |         |
| 81  |        | 051   | float | Amperes          |                         | 9       |
| 82  |        | 052   | float | Amperes          | 1 !                     | 10      |



|     | 16b         | it input | registers (use N | odbus funct             | tion 4)  |
|-----|-------------|----------|------------------|-------------------------|----------|
| А   | Address     |          |                  |                         |          |
| dec | hex         | Type     | Units            | Description             | Channel  |
| 83  | 0x 053      |          |                  |                         |          |
| 84  | 0x 054      |          |                  | -                       |          |
| 85  | 0x 055      | float    | Amperes          |                         | 11       |
| 86  | 0x 056      | +        |                  | _                       |          |
| 87  | 0x 050      | float    | Amperes          |                         | 12       |
| 88  | 0x 057      |          |                  | -                       |          |
| 89  | 0x 059      | float    | Amperes          |                         | 13       |
| 90  | 0x 053      |          |                  | ╡                       |          |
| 91  | 0x 05A      | float    | Amperes          |                         | 14       |
| 92  | 0x 05C      |          |                  | -                       |          |
|     | 0x 05D      | float    | Amperes          |                         | 15       |
| 93  |             |          |                  | -                       |          |
| 94  | 0x 05E      | float    | Amperes          |                         | 16       |
| 95  | 0x 05F      |          | •                | -                       |          |
| 96  | 0x 060      | float    | Amperes          |                         | 17       |
| 97  | 0x 061      |          |                  | 4                       |          |
| 98  | 0x 062      | float    | Amperes          |                         | 18       |
| 99  | 0x 063      |          |                  | 4                       | _        |
| 100 | 0x 064      | float    | Amperes          |                         | 19       |
| 101 | 0x 065      | 1        |                  | _                       |          |
| 102 | 0x 066      | float    | Amperes          |                         | 20       |
| 103 | 0x 067      |          |                  |                         |          |
| 104 | 0x 068      | float    | Amperes          |                         | 21       |
| 105 | 0x 069      | 11001    | 7 imperes        |                         |          |
| 106 | 0x 06A      | float    | Amperes          |                         | 22       |
| 107 | 0x 06B      | nout     | Amperes          |                         |          |
| 108 | 0x 06C      | float    | Amperes          |                         | 23       |
| 109 | 0x 06D      | Hoat     | Amperes          | _                       | 25       |
| 110 | 0x 06E      | float    | Amnoros          |                         | 24       |
| 111 | 0x 06F      | iioat    | Amperes          |                         | <u> </u> |
| 112 | 0x 070      | float    |                  |                         |          |
| 113 | 0x 071      | iioat    |                  | _                       |          |
| 114 | 0x 072      | float    |                  |                         |          |
| 115 | 0x 073      | IIUat    |                  |                         |          |
| 116 | 0x 074      | float    |                  | not used – returns zero |          |
| 117 | 0x 075      | float    |                  | US Z                    |          |
| 118 | 0x 076      | fla - ±  |                  | ţnuı                    |          |
| 119 | 0x 077      | float    |                  | ref                     |          |
| 120 | 0x 078      | £1 1     |                  | p                       |          |
| 121 | 0x 079      | float    |                  | nse                     |          |
| 122 | 0x 07A      | £I       |                  | oti                     |          |
| 123 | 0x 07B      | float    |                  |                         |          |
| 124 | 0x 07C      | C:       |                  | 1                       |          |
| 125 | 0x 07D      | float    |                  |                         |          |
| 126 | 0x 07E      | float    |                  | ╡                       |          |
|     | <b>J, L</b> |          |                  | 1                       |          |



|     | 16bi   | t input | registers (use M | odbus funct              | tion 4)  |
|-----|--------|---------|------------------|--------------------------|----------|
| А   | ddress |         |                  |                          |          |
| dec | hex    | Type    | Units            | Description              | Channel  |
| 127 | 0x 07F |         |                  |                          |          |
| 128 | 0x 080 |         |                  |                          |          |
| 129 | 0x 080 | float   | Amperes          |                          | 1        |
| 130 | 0x 081 |         |                  | 1                        |          |
| 131 | 0x 082 | float   | Amperes          |                          | 2        |
| 132 | 0x 083 |         |                  | -                        |          |
| 133 | 0x 085 | float   | Amperes          |                          | 3        |
| 134 | 0x 085 | + +     |                  | -                        |          |
| 135 |        | float   | Amperes          |                          | 4        |
| 136 |        |         |                  | -                        |          |
|     | 0x 088 | float   | Amperes          |                          | 5        |
| 137 | 0x 089 |         |                  | -                        |          |
| 138 | 0x 08A | float   | Amperes          |                          | 6        |
| 139 | 0x 08B |         | -                | -                        |          |
| 140 | 0x 08C | float   | Amperes          |                          | 7        |
| 141 | 0x 08D |         | •                | -                        |          |
| 142 | 0x 08E | float   | Amperes          |                          | 8        |
| 143 | 0x 08F |         | •                | -                        |          |
| 144 | 0x 090 | float   | Amperes          | ged                      | 9        |
| 145 | 0x 091 |         |                  |                          |          |
| 146 | 0x 092 | float   | Amperes          | irag                     | 10       |
| 147 | 0x 093 |         |                  | ave                      |          |
| 148 | 0x 094 | float   | Amperes          | eq                       | 11       |
| 149 | 0x 095 |         | <u>'</u>         | nar                      |          |
| 150 | 0x 096 | float   | Amperes          | sd                       | 12       |
| 151 | 0x 097 |         | <u>'</u>         | ent                      |          |
| 152 | 0x 098 | float   | at Amperes       | current squared averaged | 13       |
| 153 | 0x 099 |         |                  |                          | _        |
| 154 | 0x 09A | float   | Amperes          |                          | 14       |
| 155 | 0x 09B |         |                  |                          |          |
| 156 | 0x 09C | float   | Amperes          |                          | 15       |
| 157 | 0x 09D |         |                  |                          |          |
| 158 | 0x 09E | float   | Amperes          |                          | 16       |
| 159 | 0x 09F |         | ,pci co          | ]                        | 10       |
| 160 | 0x 0A0 | float   | Amperes          |                          | 17       |
| 161 | 0x 0A1 |         | ,ipcico          | ]                        | /        |
| 162 | 0x 0A2 | float   | Amperes          |                          | 18       |
| 163 | 0x 0A3 | noat    | Amperes          |                          | 10       |
| 164 | 0x 0A4 | float   | Amperes          |                          | 19       |
| 165 | 0x 0A5 | noat    | Antiperes        | ]                        | 1.5      |
| 166 | 0x 0A6 | float   | Amperes          |                          | 20       |
| 167 | 0x 0A7 | noat    | Alliperes        | ]                        | 20       |
| 168 | 0x 0A8 | float   | Amnores          |                          | 21       |
| 169 | 0x 0A9 | HUdl    | Amperes          | ]                        | <u> </u> |
| 170 | 0x 0AA | float   | Amperes          |                          | 22       |



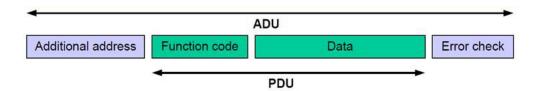
|     | 16bi   | t input  | registers (use M | lodbus func             | tion 4) |
|-----|--------|----------|------------------|-------------------------|---------|
| Δ   | ddress |          |                  |                         |         |
| dec | hex    | Type     | Units            | Description             | Channel |
| 171 | 0x 0AB |          |                  |                         |         |
| 172 | Ox OAC |          |                  | 1                       |         |
| 173 | 0x 0AD | float    | Amperes          |                         | 23      |
| 174 | 0x 0AE |          |                  | =                       |         |
| 175 | 0x 0AF | float    | Amperes          |                         | 24      |
| 176 | 0x 0B0 | <u> </u> |                  |                         |         |
| 177 | 0x 0B1 | float    |                  |                         |         |
| 178 | 0x 0B2 | £1 +     |                  |                         |         |
| 179 | 0x 0B3 | float    |                  |                         |         |
| 180 | 0x 0B4 | floot    |                  | 2                       |         |
| 181 | 0x 0B5 | float    |                  | , ze                    |         |
| 182 | 0x 0B6 | float    |                  | i i i                   |         |
| 183 | 0x 0B7 | IIUat    |                  | not used – returns zero |         |
| 184 | 0x 0B8 | float    |                  | <u> </u>                |         |
| 185 | 0x 0B9 | Hoat     |                  | sec                     |         |
| 186 | Ox OBA | float    |                  | t u                     |         |
| 187 | Ox OBB | Hoat     |                  | Ĭ                       |         |
| 188 | 0x 0BC | float    |                  |                         |         |
| 189 | 0x 0BD | nout     |                  |                         |         |
| 190 | Ox OBE | float    |                  |                         |         |
| 191 | 0x 0BF |          |                  |                         |         |
| 192 | 0x 0C0 | float    | Amperes          |                         | 1       |
| 193 | 0x 0C1 | nout     | - Amperes        |                         | 1       |
| 194 | 0x 0C2 | float    | Amperes          |                         | 2       |
| 195 | 0x 0C3 |          |                  | _                       |         |
| 196 | 0x 0C4 | float    | Amperes          |                         | 3       |
| 197 | 0x 0C5 |          |                  | -<br>-                  |         |
| 198 | 0x 0C6 | float    | Amperes          |                         | 4       |
| 199 | 0x 0C7 |          | •                | S                       |         |
| 200 | 0x 0C8 | float    | Amperes          | lne                     | 5       |
| 201 | 0x 0C9 |          | -                | current holded values   |         |
| 202 | 0x 0CA | float    | Amperes          | дес                     | 6       |
| 203 | 0x 0CB |          |                  | - lod                   |         |
| 204 | 0x 0CC | float    | Amperes          | int                     | 7       |
| 205 | 0x 0CD |          |                  | ırre                    |         |
| 207 | 0x 0CE | float    | Amperes          | ರ                       | 8       |
| 207 | 0x 0CF |          |                  | -                       |         |
| 209 | 0x 0D0 | float    | Amperes          |                         | 9       |
| 210 | 0x 0D1 |          |                  | -                       |         |
| 211 | 0x 0D2 | float    | Amperes          |                         | 10      |
| 212 | 0x 0D3 |          |                  | -                       |         |
| 213 | 0x 0D4 | float    | Amperes          |                         | 11      |
| 214 | 0x 0D6 | float    | Amperes          |                         | 12      |



|            |          | 16bit      | t input      | registers (use M | odbus func              | tion 4)    |
|------------|----------|------------|--------------|------------------|-------------------------|------------|
| Δ          | ddre     | SS         |              |                  |                         |            |
| dec        | r        | nex        | Type         | Units            | Description             | Channel    |
| 215        | 0x       | 0D7        |              |                  |                         |            |
| 216        | 0x       | 0D8        |              |                  |                         |            |
| 217        | 0x       | 0D9        | float        | Amperes          |                         | 13         |
| 218        | 0x       | 0DA        | _            |                  |                         |            |
| 219        | 0x       | 0DB        | float        | Amperes          |                         | 14         |
| 220        | 0x       | 0DC        | <i>c</i> ı . |                  |                         |            |
| 221        | 0x       | 0DD        | float        | Amperes          |                         | 15         |
| 222        | 0x       | 0DE        | floot        | A                |                         | 10         |
| 223        | 0x       | 0DF        | float        | Amperes          |                         | 16         |
| 224        | 0x       | 0E0        | float        | Amnoros          |                         | 17         |
| 225        | 0x       | 0E1        | Hoat         | Amperes          |                         | 17         |
| 226        | 0x       | 0E2        | float        | Amperes          |                         | 18         |
| 227        | 0x       | 0E3        | Hout         | 7111100103       |                         |            |
| 228        | 0x       | 0E4        | float        | Amperes          |                         | 19         |
| 229        | 0x       | 0E5        |              | ,p c. cc         |                         |            |
| 230        | 0x       | 0E6        | float        | Amperes          |                         | 20         |
| 231        | 0x       | 0E7        |              |                  |                         | _          |
| 232        | 0x       | 0E8        | float        | Amperes          |                         | 21         |
| 233        | 0x       | 0E9        |              | •                |                         |            |
| 234        | 0x       | 0EA        | float        | Amperes          |                         | 22         |
| 235<br>236 | 0x       | 0EB<br>0EC |              |                  |                         |            |
| 237        | 0x<br>0x | 0ED        | float        | Amperes          |                         | 23         |
| 238        | 0x<br>0x | 0EE        |              |                  |                         |            |
| 239        | 0x       | 0EF        | float        | Amperes          |                         | 24         |
| 240        | 0x       | 0F0        |              |                  |                         |            |
| 241        | 0x       | 0F1        | float        |                  |                         |            |
| 242        | 0x       | 0F2        |              |                  |                         |            |
| 243        | 0x       | 0F3        | float        |                  |                         |            |
| 244        | 0x       | 0F4        | £1           |                  | 2                       |            |
| 245        | 0x       | 0F5        | float        |                  | ze:                     |            |
| 246        | 0x       | 0F6        | flest        |                  | not used – returns zero |            |
| 247        | 0x       | 0F7        | float        |                  | etu                     |            |
| 248        | 0x       | 0F8        | float        |                  | <u></u>                 |            |
| 249        | 0x       | 0F9        | noat         |                  | sed                     |            |
| 250        | 0x       | 0FA        | float        |                  | )t u                    |            |
| 251        | 0x       | 0FB        | noat         |                  | μ                       |            |
| 252        | 0x       | 0FC        | float        |                  |                         |            |
| 253        | 0x       | 0FD        |              |                  |                         |            |
| 254        | 0x       | OFE .      | float        |                  |                         |            |
| 255        | 0x       | 0FF        |              |                  |                         |            |
| 256        | 0x       | 100        | float        | Celsius          | ter                     | mperature  |
| 257        | 0x       | 101        |              |                  |                         | •          |
| 258        | 0x       | 102        | float        | Volt             | syst                    | em voltage |



|          | 16bit input registers (use Modbus function 4) |     |       |       |                             |                    |  |  |
|----------|-----------------------------------------------|-----|-------|-------|-----------------------------|--------------------|--|--|
| <b>A</b> | Address                                       |     | Tuno  | Units | Description                 | Channel            |  |  |
| dec      | he                                            | ex  | Type  | Units | Description                 | Channel            |  |  |
| 259      | 0x                                            | 103 |       |       |                             |                    |  |  |
| 260      | 0x                                            | 104 | float | Volt  | system volt                 | age averaged value |  |  |
| 261      | 0x                                            | 105 | Hoat  | VOIL  | System voit                 | age averaged value |  |  |
| 262      | 0x                                            | 106 | float | Volt  | system voltage holded value |                    |  |  |
| 263      | 0x                                            | 107 | HOat  | Volt  | system voi                  | tage Holded value  |  |  |


|     | coils (use MODBUS function 1) |           |      |       |                                              |  |  |
|-----|-------------------------------|-----------|------|-------|----------------------------------------------|--|--|
| dec | Addres                        | ss<br>nex | Туре | Units | Description                                  |  |  |
| 0   | 0x                            | 00        | bit  | -     | Dry contact input (1-contact / 0-no contact) |  |  |

|     | holding registers (MODBUS function 16) |         |                                                                  |       |       |       |       |       |       |       |       |         |
|-----|----------------------------------------|---------|------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| P   | Address                                | Туре    | Description                                                      |       |       |       |       |       |       |       |       |         |
| dec | hex                                    | Туре    | Description                                                      |       |       |       |       |       |       |       |       |         |
| 0   | 0x 00                                  | Hi byte | Commands: "hold"(0x01) or "mark"(0x02) or "change address"(0x0A) |       |       |       |       |       |       |       |       |         |
|     |                                        | UX UU   | UX UU                                                            | UX UU | UX UU | UX UU | UX UU | UX UU | UX UU | UX UU | UX UU | Lo byte |
| 1   | 1 0x 01                                | Hi byte | if command is "change address",<br>then set new target address   |       |       |       |       |       |       |       |       |         |
|     |                                        | Lo byte | if command is "change address",<br>then set new target address   |       |       |       |       |       |       |       |       |         |

# **MODBUS Functions**

Modbus package structure:





For protocol description see "MODBUS APPLICATION PROTOCOL SPECIFICATION v1.1b". Implemented Modbus functions are as in the following table.

| MODBUS<br>FUNCTION | DESCRIPTION                        |
|--------------------|------------------------------------|
| 1 (0x01)           | Read Coils                         |
| 4 (0x04)           | Read Input Registers               |
| 8 (0x08)           | Diagnostics                        |
| 16 (0x10)          | Write Multiple Registers           |
| 17 (0x11)          | Report Slave ID (Serial Line only) |
| 20 (0x14)          | Read File Record                   |
| 21 (0x15)          | Write File Record                  |
| 43 (0x2B) (0x0E)   | Read Device Identification         |
|                    |                                    |
|                    |                                    |
|                    |                                    |



### **CAUTION**

Do not use functions 20 and 21, can cause damage to card.

Functions 20 and 21 are used for device calibration.



## **Technical Assistance**

If you need technical assistance or should it be necessary to return your product for repair or calibration use the contact details below:

SNV Engineering Ltd

Papadiamantopoulou 24B

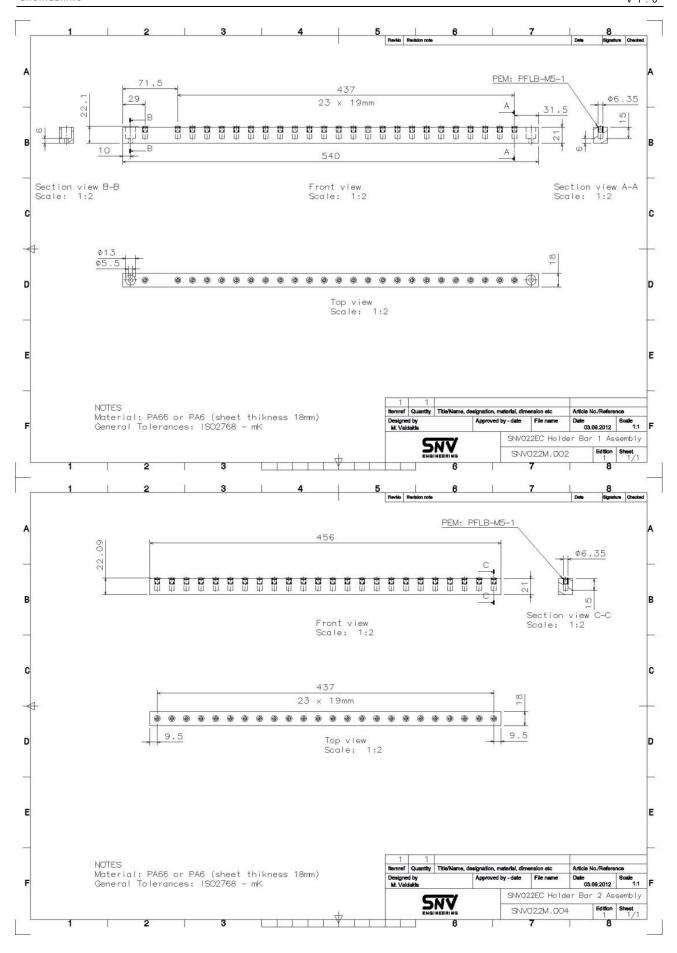
11528 Athens, Greece

web site: www.snveng.gr

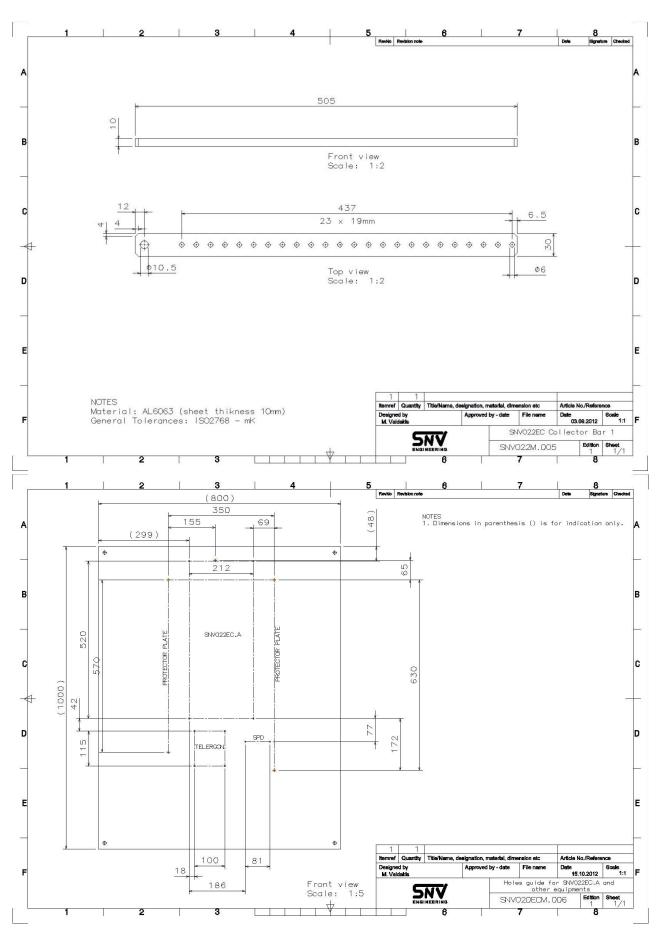
email: <a href="mailto:snv@snveng.gr">snv@snveng.gr</a>

tel: +30 210 7779260

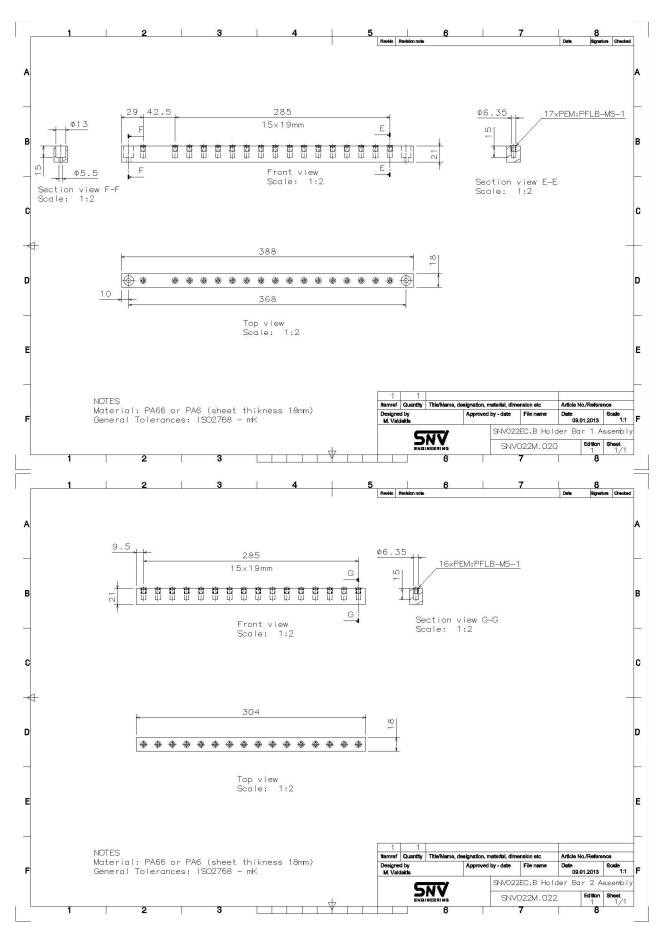
fax: +30 210 7703223



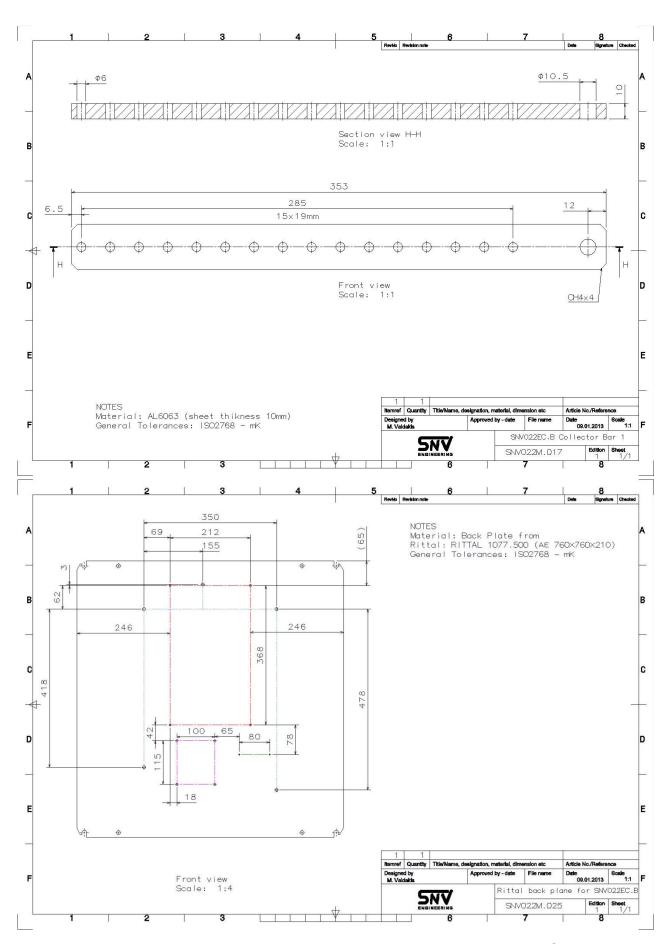

# Annex A – Drawings


List of drawings:

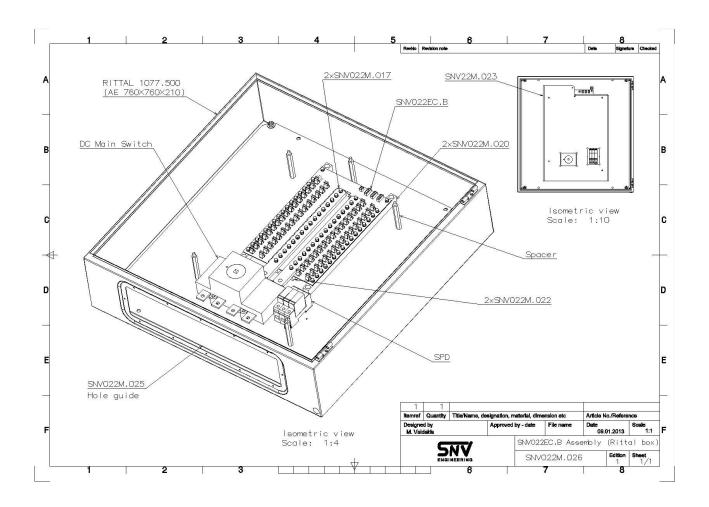
| No | Reference No | Description                       |
|----|--------------|-----------------------------------|
| 1  | SNV022M.002  | SNV022EC.A Holder Bar 1 Assembly  |
| 2  | SNV022M.004  | SNV022EC.A Holder Bar 2 Assembly  |
| 3  | SNV022M.005  | SNV022EC.A Collector Bar 1        |
| 4  | SNV022M.006  | SNV022EC.A Back Plate holes guide |
| 5  | SNV022M.020  | SNV022EC.B Holder Bar 1 Assembly  |
| 6  | SNV022M.022  | SNV022EC.B Holder Bar 2 Assembly  |
| 7  | SNV022M.017  | SNV022EC.B Collector Bar 1        |
| 8  | SNV022M.025  | SNV022EC.B Back Plate holes guide |
| 9  | SNV022M.026  | SNV022EC.B Assembly layout        |
| 10 |              |                                   |
| 11 |              |                                   |
| 12 |              |                                   |
| 13 |              |                                   |
| 14 |              |                                   |





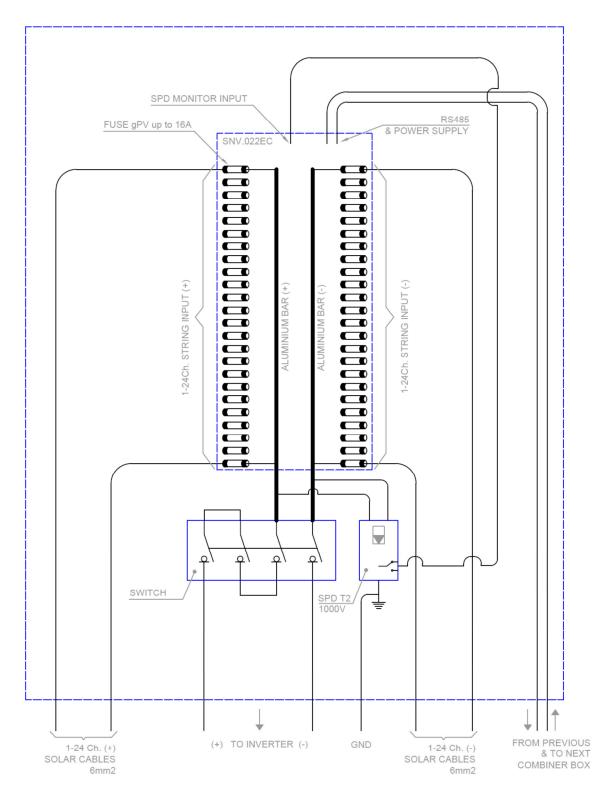






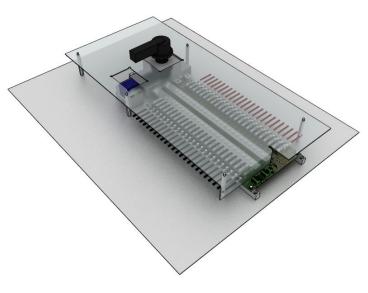


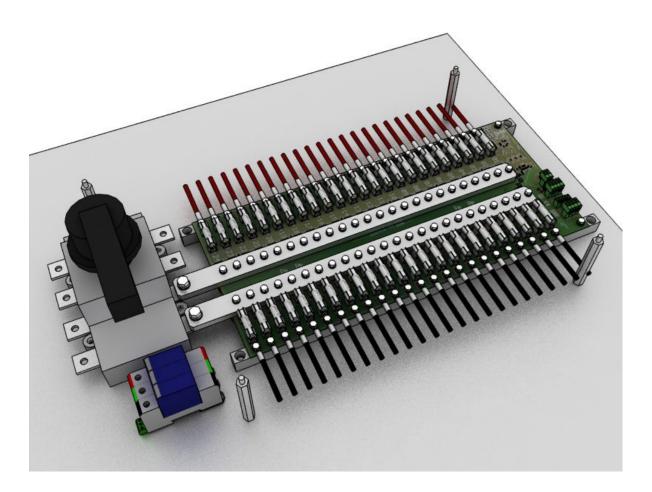







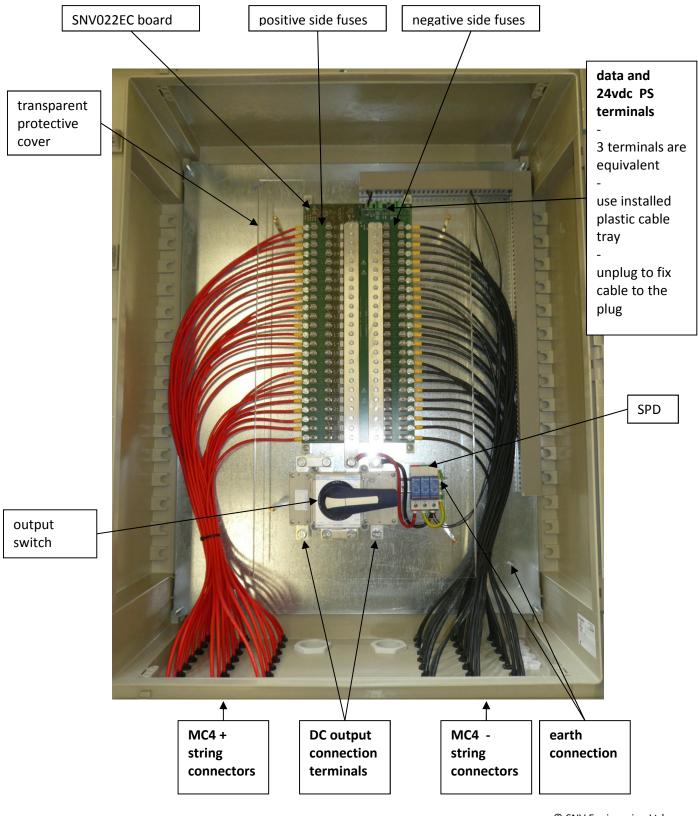

# Annex B – Recommended board integration


# Single line diagram






# **3D views**










### **Photos**



